

Grid-forming technologies: Necessity, capabilities, & impacts

Jason MacDowell ESIG Chief System Integration Officer Foro XM – 18 May 2023

Agenda: Grid Forming Technologies

- 1. What are grid-forming (GFM) inverter technologies?
- 2. What are the potential benefits of GFM?
- 3. When are GFM technologies needed or useful?
 - ➢ How does GFM work under different conditions?
 - What kinds of systems probably don't need GFM (yet)?
 - When is it a good idea to deploy GFM even if it isn't "needed yet"?
- 4. What are potential system impacts, particularly of multiple GFM installations?
 - > What considerations are important when deploying GFM?
- 5. What is next with these technologies?
 - Examples of demonstration projects and standards development

System needs and services & inverter-based resource capabilities

System Needs and Services

5

System Needs

What are grid-forming technologies? Where are they deployed today?

What does GFM mean? What are GFM technologies?

TODAY	→ TOMORROW	
 Grid Following Locks to the voltage waveform Acts likes an AC current source Regulates power slowly to meet device needs 	 Grid Forming Base Control SW only modifications Acts as an AC voltage source Fast provision of power & current to help stabilize the grid Can potentially be retrofitted 	 Grid Forming + Add Energy Storage Acts as an AC voltage source Fast provision of power & current to help stabilize the grid Additional fault support capability Can expand to Islanding & Black Start
Source: GE		

- Example technologies: battery storage, wind or solar inverters
- There are different levels or "flavors" of GFM that may address various system needs.

Where are GFM Technologies Deployed Today?

- Several BESS for microgrids & black start of simple cycle gas turbines (GE)
- BESS on St Eustatius island (SMA)
- Dersalloch Wind Farm in Scotland (Siemens Gamesa)
- Dalrymple BESS in South Australia (Hitachi ABB)
- Hornsdale BESS in South Australia (Tesla)
- Drivers behind GFM trials in Australia
- Great Britain projects (National Grid ESO) projects
- United States
 - California: GE BESS for Black Start & SM stability support
 - Hawai'i: GFM batteries used to stabilize system frequency
 - Alaska: GE BESS for remote grid stability (1996)
- Ireland EirGrid
 - 2023 pilot of GFM control algorithms on existing IBRs

What are potential benefits of grid-forming technologies?

Common Functionalities

Benefits of GFM Technologies

- Allow stable operation in lower SCR environments by providing voltage source
- Equipment control stability
- Fast (nearly instantaneous) frequency support like synchronous machines
- Minimize equipment, plant and grid tripping
- Avoid generation restrictions under prior outage operation guides (MISO/Invenergy example)
- Avoid need for network upgrades due to stability constraints
 - Therefore avoid associated network upgrade project delays
- Black start / system restoration

GFM capability resolves many equipment stability and some grid issues, but it doesn't solve all network issues.

Long distance power transfer in weak networks is still a challenge even with GFM deployed.

GFM Australia Performance Example

- Hornsdale Power Reserve
- Under frequency event on 11/08/2022 (NEM time 1852:35)
- Inertial response is driven by the Rate of Change of Frequency (RoCoF)
- Followed by the primary frequency response

Grid forming technologies are not a magic solution to all problems, and they can create challenges of their own that need to be carefully managed

When are GFM technologies needed or useful?

Under what conditions is GFM most needed?
 What kinds of systems probably don't need GFM (yet)?

> When is it a good idea to deploy GFM even if it isn't "needed yet"?

Where are GFM Particularly Useful?

- Regions of grid with no synchronous generators and high share of IBR
- Weak grids with control stability risks of grid following IBR
- Electrical islands with low synchronous inertia
- Areas where transmission buildout is particularly complicated/costly
- Areas with disturbances that cause cascading generator outages

Figure source: FINGRID

What are the potential system impacts and mechanisms for deployment? (particularly of multiple GFM installations)

> What codes, standards or publications include GFM today?

> What considerations does this suggest are important when deploying GFM?

Common Functionalities

Comparison at a Glance

Specs	GC0137	OSMOSE	VDE/FNN	UNIFI (draft)	HECO
Response to phase-jump	Yes, defines response time (< 5ms) and size of phase- jump angle (5 deg)	Yes, similar to GC0137	Yes, Provides a time- dependent profile with a minimum sustain time	Yes	Yes, high level
Inertial Response / Immediate Active Power	Yes, defines response time (< 5ms)	Yes, defines response time (< 5 ms) and proposes to set min sustain time	Yes (implicit), frequency change test	Yes	Yes, high level
System Strength/ Immediate Reactive Power / Response to voltage Step	Yes, defines response time (< 5 ms)	Yes, defines response time (< 5 ms)	Yes, verified through voltage step tests	Yes (improve system strength)	Yes, high level
Fast Fault Current (balanced and unbalanced)	Yes, defines response time (< 5 ms) and time to full response (< 30 ms)	Yes, defines response time (< 5 ms), discusses active/reactive current share and pos/negative sequence prioritization	TBC	Yes, at high level and by definition	Yes, high level

This specification generally apply within equipment limits and all requirements applicable to GFL IBRs also apply (unless conflicts with GFM requirements above)

Comparison at a Glance

Specs	GC0137	OSMOSE	VDE/FNN	UNIFI (draft)	HECO
Low SCR operation	Yes	Yes, by definition	Yes	Yes	Yes, high level
Active/Reactive power sharing	Yes (implicit in other req.)	Yes (implicit in islanded test)	Yes (implicit in islanded test)	Yes	Yes, high level
Damping of voltage and frequency oscillations	Yes, defines response time (<5 ms)	May be	Yes	Yes	Yes, high level
Islanded operation	Yes	Yes	Yes	Yes	Yes, high level
Counter Harmonics	No (existing requirements for GFL apply, additional requirements may be agreed bilaterally)	No (requirement not to contribute to harmonics as applied to GFL is already challenging)	Yes	Yes	Yes, high level
Black start	Yes, if applicable	Yes, if applicable	Yes, if applicable	Yes, if applicable	Yes, if applicable

These specifications generally apply within equipment limits and all requirements applicable to GFL IBRs also apply (unless conflicts with GFM requirements above)

Deployment Considerations:

- Markets for different services that the power system needs signal the type, volume, and location of technology deployment
- Grid-forming technology deployment should be compatible with, and have minimum impact on, the existing modeling, assessment, and performance monitoring practices

What is next with these technologies?

Where are standards in place or under development?
Where will the next demonstration projects be located?

Standards & Technical Publications for GFM Technologies

- Great Britain GC 0137: Minimum specifications for provision of GF capability
- Australia NER: defines technical requirements for generators including BESS, AEMO has applied to current GFM BESS
- United States NERC: Grid forming IBR specifications
 and modeling
- UNIFI consortium draft standards
- ACER/ ENTSO-E's Requirements for Generators (RFG)
- CIGRE JWG B4/C4.93 "Development of Grid Forming Converters for Secure and Reliable Operation of Future Electricity Systems"
- Hawaii Grid Forming specification
- IEEE P2988: Recommended Practice for Use & Functions of Virtual Synchronous Machines
- IEC TC8 SC8A

Planned projects in Australia

- Waratah battery in NSW
- ARENA announcement of 8 x 250-300MW grid forming BESSs across mainland NEM

Planned Projects in Great Britain

- Five Grid Forming BESS, resulting from NG ESO Stability Pathfinder
- Commissioned 2024-2026
- Meet GC-0137 grid code
 requirements
- Deployed via ancillary services markets

<u>GFM Technology Council</u>

PURPOSE - Break the chicken-egg cycle through deployment and commercialization of GFM technology by:

- a) identifying GFM features/requirements by system operators
- supporting technology demonstrations and deploying GFM resources from OEMs b)
- GFM resource procurement by developers C)
- Standardization, codes and interconnection requirements

METHOD - Cross-pillar I, II and IV collaboration with FSOs, developers, OEMs, software developers, standardizing institutions and other stakeholders

CONFIRMED & POSSIBLE PARTICIPANTS:

Leadership

- Sten Arendt Stoltze, SVP Orsted (Chair)
- Jason MacDowell, ESIG/GE \checkmark
- Julia Matevosyan, ESIG \checkmark
- Charlie Smith, ESIG
- Mark O'Malley, Imperial College

Developera	✓ NG ESO	✓ GE	DigSilent
Developers	✓ AEMO	✓ Smartwires	Siemens PTI
✓ Orsted (Chair)	✓ ERCOT	✓ Siemens	GE
✓ Enel	✓ Energinet	✓ SGRE	Manitoba Hydro
✓ Invenergy	✓ Eirarid	 Hitachi Energy 	EMTP
✓ Zenobe	✓ FinGrid	SMA	Power World
Nextera	✓ TenneT	Mitsubishi	PowerTech Lab
Iberdrola	✓ Amprion	Toshiba	
EDF RE	✓ 50 Hertz	Vestas	
E.ON	MISO	Tesla	
Acciona	REE		
	Swissgrid	Global Power System Tra	ansformation Consortium

System Operators

OEMs

Software developers

DigSilent
Siemens PTI
GE
Manitoba Hydro
EMTP
Power World
PowerTech Labs

26

Thank You

globalpst.org/

Email: <u>Karin.Wadsack@NREL.gov</u> jason.macdowell@ge.com

